Limit of a Sum
Let \(\{a_n\}\) and \(\{b_n\}\) be two sequences. If:
\[ \lim_{n \to \infty} a_n = A \quad \text{and} \quad \lim_{n \to \infty} b_n = B, \]
then:
\[ \lim_{n \to \infty} (a_n + b_n) = A + B. \]
Proof. To prove this theorem, we use the definition of the limit for sequences. According to the definition, \(\lim_{n \to \infty} a_n = A\) means that for every \(\epsilon > 0\), there exists a natural number \(N_1\) such that:
\[ |a_n - A| < \epsilon \quad \text{for every} \ n \geq N_1. \]
Similarly, \(\lim_{n \to \infty} b_n = B\) means that for every \(\epsilon > 0\), there exists a natural number \(N_2\) such that:
\[ |b_n - B| < \epsilon \quad \text{for every} \ n \geq N_2. \]
Now, we need to show that:
\[ \lim_{n \to \infty} (a_n + b_n) = A + B. \]
To prove this, we need to show that for every \(\epsilon > 0\), there exists a natural number \(N\) such that:
\[ |(a_n + b_n) - (A + B)| < \epsilon \quad \text{for every} \ n \geq N. \]
Consider the inequality:
\begin{align} |(a_n + b_n) - (A + B)| &= |(a_n + b_n) - (A + B)| \\ &= |(a_n - A) + (b_n - B)| \end{align}
The triangle inequality ensures that:
\[ |(a_n - A) + (b_n - B)| \leq |a_n - A| + |b_n - B| \]
Now, for every \(\epsilon > 0\), since \(\lim_{n \to \infty} a_n = A\), there exists a natural number \(N_1\) such that:
\[ |a_n - A| < \frac{\epsilon}{2} \quad \text{for every} \ n \geq N_1. \]
Similarly, since \(\lim_{n \to \infty} b_n = B\), there exists a natural number \(N_2\) such that:
\[ |b_n - B| < \frac{\epsilon}{2} \quad \text{for every} \ n \geq N_2. \]
If we choose \(N = \max(N_1, N_2)\), we have that for every \(n \geq N\), the inequalities:
\[ |a_n - A| < \frac{\epsilon}{2} \quad \text{and} \quad |b_n - B| < \frac{\epsilon}{2} \]
hold. Now, for every \(n \geq N\):
\[ |(a_n + b_n) - (A + B)| \leq |a_n - A| + |b_n - B| \]
Since:
\[ |a_n - A| < \frac{\epsilon}{2} \quad \text{and} \quad |b_n - B| < \frac{\epsilon}{2}, \]
we get:
\[ |(a_n + b_n) - (A + B)| \leq |a_n - A| + |b_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]
Therefore, for every \(\epsilon > 0\), there exists an \(N\) such that for every \(n \geq N\), we have:
\[ |(a_n + b_n) - (A + B)| < \epsilon. \]
This proves that:
\[ \lim_{n \to \infty} (a_n + b_n) = A + B. \]
Limit of a Product
To prove this theorem, we need to show that for every \(\epsilon > 0\), there exists a natural number \(N\) such that:
\[ |(a_n \cdot b_n) - (A \cdot B)| < \epsilon \quad \text{for every} \ n \geq N. \]
Since \(\lim_{n \to \infty} a_n = A\), for every \(\epsilon > 0\), there exists a natural number \(N_1\) such that:
\[ |a_n - A| < \frac{\epsilon}{2 \cdot (|B| + 1)} \quad \text{for every} \ n \geq N_1. \]
Since \(\lim_{n \to \infty} b_n = B\), for every \(\epsilon > 0\), there exists a natural number \(N_2\) such that:
\[ |b_n - B| < \frac{\epsilon}{2 \cdot (|A| + 1)} \quad \text{for every} \ n \geq N_2. \]
Choose \(N = \max(N_1, N_2)\), so that for every \(n \geq N\), both \(n \geq N_1\) and \(n \geq N_2\) hold. Thus:
\[ |a_n - A| < \frac{\epsilon}{2 \cdot (|B| + 1)} \quad \text{and} \quad |b_n - B| < \frac{\epsilon}{2 \cdot (|A| + 1)}. \]
Now, consider the difference:
\[ |(a_n \cdot b_n) - (A \cdot B)|. \]
We can rewrite this difference as:
\[ |(a_n \cdot b_n) - (A \cdot B)| = |a_n \cdot b_n - A \cdot B|. \]
Add and subtract \(A \cdot b_n\):
\[ |a_n \cdot b_n - A \cdot B| = |(a_n \cdot b_n - A \cdot b_n) + (A \cdot b_n - A \cdot B)|. \]
Using the triangle inequality:
\[ |(a_n \cdot b_n) - (A \cdot B)| \leq |a_n \cdot b_n - A \cdot b_n| + |A \cdot b_n - A \cdot B|. \]
Break down the terms:
\[ |a_n \cdot b_n - A \cdot b_n| = |(a_n - A) \cdot b_n|. \]
Since:
\[ |a_n - A| < \frac{\epsilon}{2 \cdot (|B| + 1)}, \]
and:
\[ |b_n| \leq |B| + 1 \text{ for } n \geq N, \]
we have:
\[ |(a_n - A) \cdot b_n| \leq |a_n - A| \cdot |b_n| < \frac{\epsilon}{2 \cdot (|B| + 1)} \cdot (|B| + 1) = \frac{\epsilon}{2}. \]
Similarly:
\[ |A \cdot b_n - A \cdot B| = |A \cdot (b_n - B)|. \]
Since:
\[ |b_n - B| < \frac{\epsilon}{2 \cdot (|A| + 1)}, \]
and:
\[ |A| \leq |A| + 1, \]
we have:
\[ |A \cdot (b_n - B)| \leq |A| \cdot |b_n - B| < (|A| + 1) \cdot \frac{\epsilon}{2 \cdot (|A| + 1)} = \frac{\epsilon}{2}. \]
Adding the two inequalities together:
\[ |(a_n \cdot b_n) - (A \cdot B)| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]
Therefore, for every \(\epsilon > 0\), there exists an \(N\) such that for every \(n \geq N\), we have:
\[ |(a_n \cdot b_n) - (A \cdot B)| < \epsilon. \]
This proves that:
\[ \lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B. \]
Limit of the Ratio
Let’s suppose we have two sequences \(a_n\) and \(b_n\) such that:
\[ \lim_{n \to \infty} a_n = A \quad \text{and} \quad \lim_{n \to \infty} b_n = B, \]
with \(B \neq 0\). We want to prove that:
\[ \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}. \]
This means that for every \(\epsilon > 0\), there exists a natural number \(N\) such that for every \(n \geq N\), we have:
\[ \left| \frac{a_n}{b_n} - \frac{A}{B} \right| < \epsilon. \]
We can rewrite the difference as:
\[ \left| \frac{a_n}{b_n} - \frac{A}{B} \right| = \left| \frac{a_n \cdot B - A \cdot b_n}{b_n \cdot B} \right|. \]
To estimate this expression, we can use the triangle inequality and rewrite the numerator:
\[ |a_n \cdot B - A \cdot b_n| = |(a_n - A) \cdot B + A \cdot (B - b_n)|. \]
Applying the triangle inequality, we get:
\[ |(a_n - A) \cdot B + A \cdot (B - b_n)| \leq |(a_n - A) \cdot B| + |A \cdot (B - b_n)|. \]
Now, we need to estimate the two terms \( |(a_n - A) \cdot B| \) and \( |A \cdot (B - b_n)| \). To do so, we choose two quantities \( \delta_1 \) and \( \delta_2 \) such that:
\[ \delta_1 + \delta_2 = \epsilon. \]
We impose the following conditions:
\[ |a_n - A| < \delta_1 \quad \text{and} \quad |b_n - B| < \delta_2. \]
Using these inequalities, for the first term, we get:
\[ |(a_n - A) \cdot B| \leq |a_n - A| \cdot |B| < \delta_1 \cdot |B|. \]
For the second term:
\[ |A \cdot (B - b_n)| \leq |A| \cdot |B - b_n| < |A| \cdot \delta_2. \]
Summing the two terms:
\[ |a_n \cdot B - A \cdot b_n| \leq \delta_1 \cdot |B| + \delta_2 \cdot |A|. \]
Finally, divide by \( |b_n \cdot B| \). Since for sufficiently large \(n\), \( |b_n| \geq \frac{|B|}{2} \), we can write:
\[ \frac{|a_n \cdot B - A \cdot b_n|}{|b_n \cdot B|} \leq \frac{\delta_1 \cdot |B| + \delta_2 \cdot |A|}{\frac{|B|^2}{2}}. \]
Simplifying the expression:
\[ \frac{2(\delta_1 \cdot |B| + \delta_2 \cdot |A|)}{|B|^2}. \]
To ensure the entire expression is less than \( \epsilon \), we can choose \( \delta_1 \) and \( \delta_2 \) such that they satisfy a proportional relationship. For example, we can choose:
\[ \delta_1 = \frac{\epsilon}{2} \quad \text{and} \quad \delta_2 = \frac{\epsilon}{2}. \]
In this way, we ensure that:
\[ \left| \frac{a_n}{b_n} - \frac{A}{B} \right| < \epsilon, \]
proving that:
\[ \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}. \]