Il teorema della permanenza del segno per le funzioni afferma che, se una funzione reale \( f \) ha un limite \( L \neq 0 \) per \( x \to x_0 \), esiste un intorno di \( x_0 \) tale che la funzione \( f(x) \) mantiene lo stesso segno di \( L \) per tutti i valori di \( x \) in quell'intorno (escluso, eventualmente, \( x_0 \)). In altri termini:

\[ \lim_{x\to x_0} f(x) = L > 0 \, \implies \, \exists \delta > 0 \, : \, \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{ x_0 \} \, , \, f(x) > 0 \]

Se invece \( L < 0 \), allora:

\[ \lim_{x\to x_0} f(x) = L < 0 \, \implies \, \exists \delta > 0 \, : \, \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{ x_0 \} \, , \, f(x) < 0 \]

Per definizione,

\[ \lim_{x\to x_0} f(x) = L \, \iff \, \forall \epsilon > 0 \,\, \exists \delta > 0 \, : \, \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{ x_0 \} \, , \, |f(x) - L| < \epsilon \]

In particolare, scelto \( \epsilon = \frac{|L|}{2} \), si ha

\[ L - \frac{|L|}{2} < f(x) < L + \frac{|L|}{2} \]

Ora, osserviamo che:

  • Se \( L > 0 \), allora 

\[ \left( L - \frac{L}{2} \right) = \frac{L}{2} < f(x) < \frac{3L}{2} = \left( L + \frac{L}{2} \right) \qquad \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{ x_0 \} \]

  • Se \( L = -|L| < 0 \), allora 

\[ \left( -|L| - \frac{|L|}{2} \right) = -\frac{3|L|}{2} < f(x) < -\frac{|L|}{2} = \left( -|L| + \frac{|L|}{2} \right) \qquad \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{ x_0 \} \]

In entrambi i casi, in un intorno di \( x_0 \), i valori della funzione \( f(x) \) hanno lo stesso segno di \( L \).